Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Angew Chem Int Ed Engl ; 62(29): e202304010, 2023 07 17.
Article in English | MEDLINE | ID: covidwho-2312956

ABSTRACT

Mucins are the key component of the defensive mucus barrier. They are extended fibers of very high molecular weight with diverse biological functions depending strongly on their specific structural parameters. Here, we present a mucin-inspired nanostructure, produced via a synthetic methodology to prepare methacrylate-based dendronized polysulfates (MIP-1) on a multi gram-scale with high molecular weight (MW=450 kDa) and thiol end-functionalized mucin-inspired polymer (MIP) via RAFT polymerization. Cryo-electron tomography (Cryo-ET) analysis of MIP-1 confirmed a mucin-mimetic wormlike single-chain fiber structure (length=144±59 nm) in aqueous solution. This biocompatible fiber showed promising activity against SARS-CoV-2 and its mutant strain, with a remarkable low half maximal (IC50 ) inhibitory concentration (IC50 =10.0 nM). Additionally, we investigate the impact of fiber length on SARS-CoV-2 inhibition by testing other functional polymers (MIPs) of varying fiber lengths.


Subject(s)
COVID-19 , Molecular Imprinting , Humans , Mucins , SARS-CoV-2 , Polymers/pharmacology , Polymers/chemistry , Molecular Imprinting/methods
2.
Journal of Applied Polymer Science ; 140(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2235361

ABSTRACT

The adsorption of viruses from aqueous solution is frequently performed to detect viruses. Charged filtration materials capture viruses via electrostatic interactions, but lack the specificity of biological virus‐binding substances like heparin. Herein, we present three methods to immobilize heparin‐mimicking, virus‐binding polymers to a filter material. Two mussel‐inspired approaches are used, based on dopamine or mussel‐inspired dendritic polyglycerol, and post‐functionalized with a block‐copolymer consisting of linear polyglycerol sulfate and amino groups as anchor (lPGS‐b‐NH2). As third method, a polymer coating based on lPGS with benzophenone anchor groups is tested (lPGS‐b‐BPh). All three methods yield dense and stable coatings. A positively charged dye serves as a tool to quantitatively analyze the sulfate content on coated fleece. Especially lPGS‐b‐BPh is shown to be a dense polymer brush coating with about 0.1 polymer chains per nm2. Proteins adsorb to the lPGS coated materials depending on their charge, as shown for lysozyme and human serum albumin. Finally, herpes simplex virus type 1 (HSV‐1) and severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2) can be removed from solution upon incubation with coated fleece materials by about 90% and 45%, respectively. In summary, the presented techniques may be a useful tool to collect viruses from aqueous environments.

3.
Small ; 19(15): e2206154, 2023 04.
Article in English | MEDLINE | ID: covidwho-2173459

ABSTRACT

As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.


Subject(s)
COVID-19 , Fullerenes , Humans , SARS-CoV-2 , Fullerenes/pharmacology , Protein Binding
4.
Chembiochem ; 23(6): e202100681, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1620109

ABSTRACT

Evidence is strengthening to suggest that the novel SARS-CoV-2 mutant Omicron, with its more than 60 mutations, will spread and dominate worldwide. Although the mutations in the spike protein are known, the molecular basis for why the additional mutations in the spike protein that have not previously occurred account for Omicron's higher infection potential, is not understood. We propose, based on chemical rational and molecular dynamics simulations, that the elevated occurrence of positively charged amino acids in certain domains of the spike protein (Delta: +4; Omicron: +5 vs. wild type) increases binding to cellular polyanionic receptors, such as heparan sulfate due to multivalent charge-charge interactions. This observation is a starting point for targeted drug development.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: covidwho-1463841

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5'-untranslated region (5'-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/therapy , RNA Interference , RNA, Small Interfering/pharmacology , SARS-CoV-2/growth & development , Virus Replication/drug effects , 5' Untranslated Regions/genetics , Animals , Cell Line, Tumor , Chlorocebus aethiops , Drug Evaluation, Preclinical , HeLa Cells , Humans , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , Vero Cells , Virus Replication/genetics
6.
Virol J ; 18(1): 182, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1403244

ABSTRACT

BACKGROUND: Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS: The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS: Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS: Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.


Subject(s)
Antiviral Agents/pharmacology , Artemisia/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Coronavirus, Feline/drug effects , Coronavirus, Feline/growth & development , Plant Extracts/chemistry , SARS-CoV-2/growth & development , Viral Plaque Assay
7.
Angewandte Chemie ; 133(29):16005-16014, 2021.
Article in English | ProQuest Central | ID: covidwho-1300361

ABSTRACT

Wir zeigen, dass negativ geladene Polysulfate durch elektrostatische Wechselwirkungen an das Spike‐Protein von SARS‐CoV‐2 binden. Durch einen Plaquereduktionstest verglichen wir die hemmende Wirkung von Heparin, Pentosanpolysulfat, linearem Polyglycerolsulfat (LPGS) und hyperverzweigtem Polyglycerolsulfat (HPGS) gegenüber SARS‐CoV‐2. Dabei ist das synthetische LPGS der vielversprechendste Inhibitor mit IC50=67 μg mL−1 (ca. 1,6 μm) und zeigt eine 60‐fach höhere virushemmende Aktivität als Heparin (IC50=4084 μg mL−1) bei zugleich deutlich geringerer gerinnungshemmender Aktivität. Außerdem konnten wir durch Moleküldynamiksimulationen bestätigen, dass LPGS stärker an das Spike‐Protein bindet als Heparin selbst und dass LPGS sogar noch stärker an die Spike‐Proteine der neuen N501Y‐ und E484K‐Varianten bindet. Unsere Studien belegen, dass die Aufnahme von SARS‐CoV‐2 in Wirtzellen über elektrostatische Wechselwirkungen blockiert werden kann. Deshalb kann LPGS als vielversprechender Prototyp für das Design weiterer neuartiger viraler Inhibitoren von SARS‐CoV‐2 herangezogen werden.

8.
Angew Chem Int Ed Engl ; 60(29): 15870-15878, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1265369

ABSTRACT

Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 µg mL-1 (approx. 1.6 µm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 µg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , Heparin/metabolism , Pentosan Sulfuric Polyester/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Heparin/chemistry , Humans , Molecular Dynamics Simulation , Pentosan Sulfuric Polyester/chemistry , Polymers/chemistry , Polymers/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Static Electricity , Vero Cells
9.
Adv Funct Mater ; 31(22): 2009003, 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1158823

ABSTRACT

2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.

10.
Small ; 17(11):2170046, 2021.
Article in Spanish | Wiley | ID: covidwho-1139301

ABSTRACT

In article number 2007091, Ievgen S. Donskyi, Chuanxiong Nie, Kai Ludwig, Jakob Trimpert, and co-workers report an idea of designing a graphene-based nanostructure that can rupture corona virions. This study shows that a combination of two different mechanisms at nanobiointerfaces by manipulation of the functionality of nanoplatform is an efficient way to control and accelerate biointeractions and to produce new vectors for future antiviral applications.

11.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1066783

ABSTRACT

Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 µg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A virus/drug effects , Influenza, Human/virology , Nanoparticles/chemistry , Neuraminidase/chemistry , Animals , Antiviral Agents/pharmacology , Binding Sites , Cell Membrane/metabolism , Dogs , Erythrocyte Membrane/virology , Humans , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Virus Attachment/drug effects , Virus Internalization/drug effects
12.
Small ; 17(11): e2007091, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060956

ABSTRACT

Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.


Subject(s)
Graphite/chemistry , SARS-CoV-2/chemistry , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Cryoelectron Microscopy , Humans , Microscopy, Atomic Force , Pandemics , SARS-CoV-2/drug effects
13.
Nano Lett ; 20(7): 5367-5375, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-628240

ABSTRACT

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.


Subject(s)
Betacoronavirus/ultrastructure , Coronavirus Infections/virology , Nanostructures/ultrastructure , Pneumonia, Viral/virology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Drug Design , Humans , Influenza A virus/drug effects , Influenza A virus/ultrastructure , Microscopy, Electron , Models, Biological , Nanotechnology , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/ultrastructure , Virus Internalization/drug effects
14.
Smart Mater Med ; 1: 48-53, 2020.
Article in English | MEDLINE | ID: covidwho-654444

ABSTRACT

The outbreak of a novel highly infectious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused people's concern about public health. The lack of ready-to-use vaccines and therapeutics makes the fight with these pathogens extremely difficult. To this point, rationally designed virus entry inhibitors that block the viral interaction with its receptor can be novel strategies to prevent virus infection. For ideal inhibition of the virus, the virus-inhibitor interaction has to outperform the virus-host interaction. In our view, the morphology of the inhibitor should be carefully designed to benefit virus-inhibitor binding, especially that the surfaces of viruses are mostly rough due to the existence of surface proteins for receptor-binding. In this perspective article, we would like to discuss the recent progress of designing inhibitors with spiky topography to maximize the interactions between viruses and inhibitors. We also would like to share our idea for the future study of inhibitors to prevent virus infection.

15.
Angew Chem Int Ed Engl ; 59(30): 12417-12422, 2020 07 20.
Article in English | MEDLINE | ID: covidwho-343407

ABSTRACT

Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand-receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK-II cells.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , N-Acetylneuraminic Acid/chemistry , Nanogels/chemistry , Animals , Antiviral Agents/chemistry , Dogs , Influenza A virus/physiology , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Microscopy, Atomic Force , Microscopy, Fluorescence , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL